Photoautotrophic Polyhydroxybutyrate Granule Formation Is Regulated by Cyanobacterial Phasin PhaP in Synechocystis sp. Strain PCC 6803.
نویسندگان
چکیده
Cyanobacteria are photoautotrophic microorganisms which fix atmospheric carbon dioxide via the Calvin-Benson cycle to produce carbon backbones for primary metabolism. Fixed carbon can also be stored as intracellular glycogen, and in some cyanobacterial species like Synechocystis sp. strain PCC 6803, polyhydroxybutyrate (PHB) accumulates when major nutrients like phosphorus or nitrogen are absent. So far only three enzymes which participate in PHB metabolism have been identified in this organism, namely, PhaA, PhaB, and the heterodimeric PHB synthase PhaEC. In this work, we describe the cyanobacterial PHA surface-coating protein (phasin), which we term PhaP, encoded by ssl2501. Translational fusion of Ssl2501 with enhanced green fluorescent protein (eGFP) showed a clear colocalization to PHB granules. A deletion of ssl2501 reduced the number of PHB granules per cell, whereas the mean PHB granule size increased as expected for a typical phasin. Although deletion of ssl2501 had almost no effect on the amount of PHB, the biosynthetic activity of PHB synthase was negatively affected. Secondary-structure prediction and circular dichroism (CD) spectroscopy of PhaP revealed that the protein consists of two α-helices, both of them associating with PHB granules. Purified PhaP forms oligomeric structures in solution, and both α-helices of PhaP contribute to oligomerization. Together, these results support the idea that Ssl2501 encodes a cyanobacterial phasin, PhaP, which regulates the surface-to-volume ratio of PHB granules.
منابع مشابه
Four novel genes required for optimal photoautotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803 identified by in vitro transposon mutagenesis.
Four novel Synechocystis sp. strain PCC 6803 genes (sll1495, sll0804, slr1306, and slr1125) which encode hypothetical proteins were determined by transposon mutagenesis to be required for optimal photoautotrophic growth. Mutations were also recovered in ccmK4, a carboxysome coat protein homologue, and me, the decarboxylating NADP(+)-dependent malic enzyme. This is the first report that these kn...
متن کاملNew insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate.
Phasins are proteins that are proposed to play important roles in polyhydroxyalkanoate synthesis and granule formation. Here the phasin PhaP of Ralstonia eutropha has been analyzed with regard to its role in the synthesis of polyhydroxybutyrate (PHB). Purified recombinant PhaP, antibodies against PhaP, and an R. eutropha phaP deletion strain have been generated for this analysis. Studies with t...
متن کاملAccumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells.
Polyhydroxyalkanoates (PHAs) are polyoxoesters that are produced by diverse bacteria and that accumulate as intracellular granules. Phasins are granule-associated proteins that accumulate to high levels in strains that are producing PHAs. The accumulation of phasins has been proposed to be dependent on PHA production, a model which is now rigorously tested for the phasin PhaP of Ralstonia eutro...
متن کاملIdentification and nitrogen regulation of the cyanase gene from the cyanobacteria Synechocystis sp. strain PCC 6803 and Synechococcus sp. strain PCC 7942.
An open reading frame (slr0899) on the genome of Synechocystis sp. strain PCC 6803 encodes a polypeptide of 149 amino acid residues, the sequence of which is 40% identical to that of cyanase from Escherichia coli. Introduction into a cyanase-deficient E. coli strain of a plasmid-borne slr0899 resulted in expression of low but significant activity of cyanase. Targeted interruption of a homolog o...
متن کاملAltering the Structure of Carbohydrate Storage Granules in the Cyanobacterium Synechocystis sp. Strain PCC 6803 through Branching-Enzyme Truncations.
UNLABELLED Carbohydrate storage is an important element of metabolism in cyanobacteria and in the chloroplasts of plants. Understanding how to manipulate the metabolism and storage of carbohydrate is also an important factor toward harnessing cyanobacteria for energy production. While most cyanobacteria produce glycogen, some have been found to accumulate polysaccharides in the form of water-in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 81 13 شماره
صفحات -
تاریخ انتشار 2015